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INTRODUCTION

The purpose of this research was to develop efficient and accurate finite
elements for the large displacement, transient analysis of shells. It was
apparent from the beginning of this research program that in order to achieve
these goals, minimal quadrature rules would have to be developed so that the
fewest possible number of quadrature points would be used in an element. In
the case of the 4-node shell element, minimal quadrature consists a single
quadrature point per element; in the 9-node Lagrange shell element, minimal
quadrature is a 2x2 Gauss quadrature. Compared to full quadrature, reduced
quadrature reduces solution time b; 50% to 75% and also enhances the accuracy
of shell elements.

However, minimal quadrature elements have one important shortcoming: they
possess spurious singular modes, often known as hourglass modes, which can
completely destroy a solution. Therefore, procedures were developed for
controlling these spurious modes. These methods have been called y-methods
and they involve a special projection so that the consistency, that is the
ability to meet the'patch test, of the finite element is not lost. We have
been able to apply these methods to both linear and nonlinear problems as
evidenced by the results reported in Belytschko, Tsay and Lin (1981). Some of
the nonlinear results obtained in that paper are reviewed in Appendix C of
this report, It can be seen from these resuits, that the method has indeed
become effective in providing accurate nonlinear solutions. The method has
already been incorporated in the general purpose program ABAQUS.

In addition to the basic development of the stabilization procedure, the
major findings of this project are: (1) the identification of the membrane
locking phenomenon which impedes the convergence of any fully integrated

curved element; (2) the deveiopment of general methods for ameliorating
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membrane locking through both explicit mode decomposition projections and \)‘\EE:
through implicit projections by means of reduced integration; (3) the ;;:"'."
development of stabilization procedures for higher order elements such as the :;s’é.\.
9-node element which satisfy basic consistency and the patch test. E;:‘g:‘: .
The motivation for the research into the curved elements can be _~ Nt
understood by examining Figure la. These results were obtained with the i!'ﬁ"f;
widely-used, 9-node Lagrange CO-shell element. As can be seen, it is E:if.?
difficult to choose a quadrature scheme for the 9-node element which is both ;;""“’:.
accurate and stable. For full integration (3x3) or selective reduced ;"E:\
integration, even a relatively fine mesh such as this results in errors which ?‘Eiﬂ;‘.
are unacceptably large. On the other hand, uniform reduced integration, which ;”‘:
in this case is 2x2 on all terms, provides good accuracy but results in "\:“,;:-'::\
Y

singularity of the assembled stiffness for some support conditions. This

M 5.
TRION

limitation of uniform reduced integration probably makes it unacceptable for

AL SO
A0S
“y
' X

general purpose programs, but its superior accuracy is attractive. ;’:\,::\ »I
The relatively poor performance of the fully-integrated (3x3) 9-node :\Ez
Lagrange element in the simple arch problem is actually a mild case of i:::_
misbehavior. As shown in Fig. lb, for more complex, deeply-curved shells, the "\.;’
behavior of both the 3x3 and selective-reduced integration schemes can be :f-a:.'
simply abysmal. In this case, 1445 degrees of freedom for a quadrant of a \,.,
shell yielded results which were only 26% of the exact solution. E“‘:‘
A similar impasse has evolved in the development of 3-node, 18 degree-of- ‘.-"j\j
freedom trianguiar shell elements., Essentially, prior to this research no :.?v‘
element of this genre existed which could solve a wide class of shell problems ;:EE.'-
with acceptable accuracy. While certain elements performed well for specific E;;EE:
problems, invariably when tested on a set of demanding shell test problems, .‘:;::
their performance is unsatisfactory. :-‘E*‘E:\
-\::\::\_‘."
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Two of the phenomena which have been identified as the culprits in poor
element performance are shear and membrane locking. Shear locking was first
identified by Doherty et al. (1969) and Ziekiewicz et al. (1971), who at the
same time proposed the daring remedy of reduced integration. Reduced
integration, and its offspring, selective reduced integration (SRI), proved to
be very successful in amelijorating the effects of shear locking in the
analysis of plates and shells.

The term "membrane locking" was coined by Stolarski and Belytschko (1981)
(see also Stolarski and Belytschko (1982)), who showed that it is related to
an inadequate representation of inextensional deformation. The poor
performance of many elements in analyzing the response of shells where
inextensional modes of deformation are important has been noted by numerous
authors, including Ashwell and Sabir (1971), Sabir and Ashwell (1971), Morley
(1972), Sabir and Lock (1973), Fried (1973) and Dawe (1974)., Problems related
to inextensional bending were also discussed later by Ashwell (1976), Lee and
Pian (1978), Noor and Peters (1981), Kikuchi (1982), Aliman (1982), MacNeal
(1982), Morley (1983) Stolarski and Belytschko (1983) and Kikuchi and Aizawa
(1984). Reduced integration is also effective in mitigating membrane locking;
see Parisch (1979) and Stolarski and Belytschko (1983).

However, prior to the work performed in this contract, membrane locking
in complex shell elements was poorly understood and its pervasiveness not
appreciated. Thus many users of degenerated elements did not anticipate its
appearance in those elements, for the idea expressed in Noor and Peters
(1981), that this locking "is a result of inadequate representation of rigid
body modes" was widely held. Yet degenerated isoparametrics, which correctly
incorporate rigid body motion, as first noted by Argyris and Scharpf (1968),

also encounter severe membrane locking.,
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This contract has shown that locking can be eliminated by projection o
methods. Among these are mixed formulations, in which separate interpolants ,(
are used for the stresses and displacements as in Lee and Pian (1978) and Noor ??cc
and Peters (1981), or by mode decomposition methods in which the nodal ;?32-
displacements are projected so as to minimize parasitic stresses. Examples of

the latter are the Hughes and Tezduyar (1981) quadrilateral plate element and

the Belytschko, et al. (1984c) triangular plate element. A common feature of ‘53:3
all of these methods, mixed formultions, reduced integration and mode s

decomposition, is that they can be viewed as stress projections, Stress

projections are methods in which the stresses are projected on a subspace of -
stresses. If the stress projection is designed so that parasitic shear
stresses are reduced, then shear locking is mitigated. Similarly, stress

projections that reduce parasitic membrane stresses reduce membrane locking.

The classification of projection methods as developed in this contract is

summarized in Fig. 2. They are classified as (1) implicit projection methods,

such as reduced integration, and (2) explicit projection methods, such as

mixed methods and mode decomposition methods. Mode decomposition projections ch
RN
are the most explicit of these methoas in that algebraic procedures are used RN
:‘.r:‘: %
to remove parasitic stresses. All of the projection methods ameliorate Sj\jz
YA,

i locking by annihilating parasitic shear and membrane stresses.

‘ The outline of the report is as follows: in Section 1 a simple model
will be used to show the similarity of the causes of shear and membrane

) '1ock1ng and their relationship to parasitic shear and membrane stresses.

Section 2 will then describe how mode-decomposition stress projection methods

can be used to alleviate shear and membrane locking. Se~tion 3 will show that
AN

.‘..... .
e e s
AR /"" CaTp et e %
PRSP R *
-

\
1
| in mode decomposition projection methods the standard B-matrix is projected

; onto the interpolation for the stresses. In Séction 3 it is shown that the 9-
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node Lagrange element with 2x2 integration represents a stress projection
which is free of parasitic shear and membrane stresses; and hence free of
membrane and shear locking. This element is rank deficient and requires
stabilization; a y-stabilization developed in this contract is described in
Appendix A. In Appendix B, a formal equivalence is established between this
element and an exactly integrated mixed method.

In Section 5 a challenging set of tests problems for linear analysis of
shells is desscribed. We have found these problems to be very decisive in
establishing the viability of elements and have called it an obstacle
course., The performance of the new elements developed here and some older
elements on the obstacle course is described in Section 6., It is concluded
that the 9-node element with uniform 2x2 quadrature and the y-stabilization

developed in this contract performs superbly on this set of problems.
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1. SHEAR AND MEMBRANE LOCKING IN CURVED BEAMS

)
A

Y
Pl

For purposes of examining the causes of shear and membrane locking, we

will consider a curved beam described by a one dimensional version of the

Marguerre shallow shell equations. Although this is one of the less popular

] methods for treating curved shells by finite elements, it should be stressed

that the mechanical behavior of elements described by alternative methods such

= as degenerate shell theories and classical deep shell theories is identical as

|

O
- long as the shell element is shallow; the convergence of shallow shell AR
. . _\:. 0
;2 equations expressed in Cartesian components to deep shell results has been :{{:{
<. ."'~ \.n
o ‘ . o
~ effectively argued by Idelsohn (1981). Stolarski et al. (1985) have extended Afan

P

those arguments to degenerated shell theories.

s

2l

In most practical applications, shell elements are quite shallow because
larger elements would prevent the achievement of satisfactory accuracy.
Furthermore, locking effects increase with increasing curvature. Thus the

‘ Marguerre theory provides an ideal vehicle for the study of locking in curved

Rttty ) 3

elements.

] Y

The kinematic relations for the Marguerre beam are given by

-

P A

(1.1) :j'::.'-:

(1.2)

R
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% Y =W, -9 (1.3) P
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X Here u and w are the x and y components of the displacement of the midline ;;f*-
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S and ¢ is the rotation of the cross-section and the rigid body motion is ::ufl
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removed from w, so that w is the displacement relative to the chord, see
Belytschko and Glaum (1979); w® is the initial deflection of the midline from
the chord of the element e, « and y are the membrane strain, curvature and
transverse shear strain, respectively; x is the chord of the element (see Fig.
3) and commas denote différentiation.

The stiffness matrix for an element is obtained in the displacement

method by

au
f[ = ﬁ; (1.4)
where dI is a nodal degree of freedom, fI the corresponding nodal force and U
the potential energy. For an elastic, isotropic beam the potential energy is
given by

U=21- f(DBncz"'D

2+ 0gr%) @ (1.5)
Q

Me
where @ is the domain of the element (length L); DB’ DM and DS are the
bending, membrane and shear constants. For an elastic beam of thickness
(depth) d and unit width, Young's modulus E and shear modulus G, these

constants are given by

1 .3
Dg = 17 Ed (1.6a)
Dy = Ed (1.6b)
Dg = xGd (1.6¢)
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where «_ is the shear-correction factor. The energies associated with the

s
constants DB, DM and DS are called the bending, membrane and shear strain

energies. Note that for a thin beam, d/L << 1,

D D

B
<< 1
LEDM L%

«< 1 ‘ (1.7)

and the ratios of bending to membrane and bending to shear energy will
similarly be small if the strains are of equal order.

Shear and membrane locking arises in curved elements because of the
inability of most finite elements to achieve deformed states in which the
transverse shear strain and membrane strain vanish throughout the element.
Modes of deformation in which shear and membrane stresses vanish play an
important role in the mechanics of shells, For example, when the moment field
is constant, the transverse shear vanishes. When a shell with a single
nonzero curvature, i.e. a cylindrical shell, is subjected to a state of pure
bending, the membrane strains will vanish. This mode of deformation is called
an inextensional mode of deformation because whén the membrane strain
vanishes, all lines in the middle surface of the shell remain constant in
length.

In a curved finite element, inextensional states of deformation are often
not possible. The consequences of this shortcoming are severe when finite
elements are used to analyze a shell which undergoes inextensional bending.
Because of the inequalities which hold for thin beams, (1.7), even a small
membrane strain or transverse shear strain will cause the membrane or shear
energy to overshadow the bending energy. Therefore, if a finite element is
used to model a shell deforming in pure bending, it must be capable of

representing this deformation so that only the bending energy is nonzero. Any
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shear or membrane strains which are developed will absorb a substantial amount

of energy and the element will behave too stiffly, which is known as
locking. The stresses associated with these spurious energies are often
éalled parasitic shear and membrane stresses. Elimination of parasitic shear
and membrane stresses will eliminate locking.

It will now be shown that many of the commonly used elements will exhibit

locking. Substituting Eqs. (1.l) to (1.3) into (1.5) yields

u ='% é [DB¢2,x « bending energy
+ Dy(u,, + w?x w,x)z « membrane energy (1.8)
+ Og(w,, - ¢)2] da « shear energy

If we consider a quadratic, isoparametric element, then the three displacement
components and the initial displacement of the midline from the chord are

given by quadratic, Lagrange shape functions NI » SO

[u, W, ¢, w] = I

it W

, Ny (x) [UI’ w?, o> Wil (1.9)
From Eqs. (1.8) and (1.9), it can be seen that if (1) w° # 0 (i.e. if the
shell is curved - see Fig. 3), and (2) if w # 0, then the membrane energy will
be nonzero because Usy is linear and cannot cancel w?x Wy which is
quadratic., Since the two conditions of the previous sentence are met in a
state of inextensional bending, this element will exhibit parasitic membrane
§tresses and be subject to membrane locking when the stiffness is integrated
accurately; this behavior has been studied by Stolarski and Belytschko (1983).

A 9-node Lagrange shell element will encounter the same difficulties.
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Remark., Note that w is the transverse displacement relative to the chord, so

that it vanishes in rigid body motion; otherwise, nonzero membrane strain

appears in rigid body rotation.

Similarly, because ¢ is a polynomial of higher order than Wiy in this
element, it is clear from (1.8) that parasitic shear energy will appear.
However, because the order of the polynomial associated with parasitic shear
is lower than that associated with parasitic membrane strains, shear locking
will not be as pervasive or damaging in this element as membrane locking.

Similar locking mechanisms can also be shown to occur for the cubic,
isoparametric Lagrange elements, alithough the results of Arnold {1981) show -

that the locking phenomenon diminishes as the order of the polynomials

0

increase. For linear isoparametrics, no membrane locking occurs because Wiy

vanishes. \

In Kirchhoff or C1 elements, only membrane locking occurs since the
relation Woo = 0 is incorporated in the element, so that the transverse shears
vanish., The membrane locking phenamenon in these elements can be quite
severe., For example, in a standard beam with w® and w interpolated by cubic
Hermite interpolants and u interpolated by linear interpolants, the term
w?x Wy is a quartic, so it cannot be effectively negated by Usy o which is
only a constant.

Some {nvestigators have advocated using a higher order interpolation for
u than w so that the membrane strain can be eliminated in pure bending modes.
For example, for cubic w® and w, a quintic interpolant for u would enable
spurious membrane strains to be suppressed. However, this remedy introduces

substantial drawbacks in nonlinear analysis, for as shown by Argyris and

Scharpf (1968), unless the shape functions are of the same order as that used
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to represent the geometry, difficulties arise in large rotations. Rigid body
motion can be adequately represented with shape functions of different order
when a corotational coordinate system is used for the element, as in
Belytschko and Hsieh (1973). However, the use of a single corotational system
for an element with high order shape functions may introduce errors beﬁause
rigid body rotation then varies substantially within a single element.

In summary, if the orders of the interpolation polynomials for u and w

are such that constant moment states generate shear and membrane energy, that

is parasitic stresses, then locking will result. Removal of the parasitic
.'_:.r_..-:
stresses is therefore a remedy for locking. b Qi
) : :f'-(::q‘
__.'l fn '.4
Remark 1.1. Elements which exhibit locking do ultimately converge. Locking LM
r., : ‘ ‘.“
does not imply the absence of convergence, but indicates the inability of the ;;1u;:
A o
element to provide reasonable accuracy for coarse and moderate meshes. ;;ﬁxg
2o

Remark 1.2. Many alternative paradigms are available for locking. For

.

(Lm0

e

example, Prathap and Bhashyam (1982) explain locking by the appearance of 8;5&%
‘_\__\:_

spurious constraint equations; Park and Flaggs (1984) explain locking through ;S::‘E
byn

an

the appearance of unusually high frequencies in a Fourier analysis of the

l"
)
4

ﬁ:.
sl

discrete equations. All of these approaches provide useful insights into the

000k
Py
,-f'.'r‘ .

L)

XR7
v

causes of locking, but in the setting of projection methods, the viewpoint of

T
'

parasitic stresses appears most elucidating.
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:'\ 2. MODE DECOMPOSITION PROJECTION METHODS
-
b . L . . Ve
E: The purpose of the mode-decomposition projection methods is to project .
;l ‘?‘q‘
::: the nodal displacements so that the parasitic stresses, and hence locking, are ;\
N o: g
' eliminated. In this Section, the application of projections to eliminate T
- TS
';: shear and membrane locking in simple beam eTements will be described; the -,"."-ﬁ:
. ":-."-.
¥l application of projection to a triangular shell element is also sketched. ;Z-‘;f-:
N BIOGY,
The basic idea of mode decomposition projection methods is to define the S
::j bending mode component of any deformation and to ignore the membrane and shear j'.’-::;:
LA v:.r,:-‘.
P strain energies associated with the bending modes. Thus the strain energy }_::'}"_
| AL
R+ AP
v expression (1.5) becomes _”’"
;
2 :
™ 1 2 2 2
&) U= z-sj; [DBK + Dyle ~ €p)® + Dg(y 1) ]da (2.1)
W o
~ =
4 where e, and v, are the membrane and shear strains in the bending mode. ;Z:'
PN =
) [}
e As can readily be seen from the above, in a constant moment state, the bending ;z-
L. o
b mode constitutes the total deformation so the membrane and shear energies will i
4\ SIS
» vanish, since in that case € = ¢, and v = vy. C’E:
. o . R
< This mode decomposition is implemented by defining bending nodal E.:.r
g ".'.':',‘
- displacements through a projection -
. SR
R R
5 A
) d = P d 2.2 "--'-"
: ~b ~b ~ ( ) :\.'-\.
s ESEN
o
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By
s
o,
, oo
by by AN
g ® A
J = g 'Eb g (2.3) 2
N "o ,.\_"-
2 : T
N} The requirement that the bending parts of the membrane and shear strains, EZ'E:
3 o
N . -~
i €y and vy, be those strains that occur in a constant moment state is not st
| o
b;‘ sufficient to identify the projection operator E-b’ because it is only one of :._E;
e - e o
I' the bending modes. For other nodal displacements, it is also necessary to .;-ﬁsj;
o Nt
i define the bending mode (or component) of the nodal displacements. Therefore »La 04
~ a more general procedure must be developed, -Z:f:f'_f-l
i: Let us consider the mode decomposition procedure for shear projection in \'::
o~ AL
C® beam elements. The first step of this procedure is to define a Kirchhoff Pt
AL
mode for any displacement field. A Kirchhoff mode is the displacement :::2\'_‘
NN
field wK(x) that would occur in a Kirchhoff beam with the curvature field }5::
."‘.' \
given by Eq. (1.2); wK(x) is obtained by simply integrating the curvature =at
oG
twice and then choosing the constant of integration so that the Kirchhoff ::.'\:.,
Ry
mode best fits the nodal displacements of the element. \r\::
RN,
For example, consider the 2 node, linear w, linear ¢ element in which s
-
3‘5?:‘-:
oS
wew(l-g) +w¢ (2.4a) RN
23
o =0(1-6) +o,8 (2.4b) N
N
o
o
In this element, Eqs. (1.2) and (2.4b) yield the following curvature !‘".
N
‘\:\::'1
. 1 - ,\{N#‘:
A
_ _ TN
and the Kirchhoff modes are given by R
- NN
.“J:::}-
NSO
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Kix) = - thxl e a x (2.6)

w
The constant 3y is selected by

9 = 4 . ) (2.7)

so that the nodal rotations of the Kirchhoff mode match the total nodal

rotations of the beam

Wik (0) = 9, _ (2.82)
waN(L) = 4 (2.8b)

This selection is based entirely on physical reasoning; the aim is to insure
that in a constant moment state, such as shown in Fig. 3, the rotations are
entirely associated with the Kirchnoff (i.e. the bending) mode, so that
transverse shear energy vanishes in (2.1). It is not always possible to
satisfy relations such as (2.8) (see for example the development of the
triangular plate in Belytschko, et al. (1984)).

The Kirchhoff mode is then selected as the bending mode, so that the
relation between the total nodal displacements and the bending nodal

displacements follows from (2.6-8) and is given by

» = e 2w
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A little manipulation of Eqs. (2.1), (2.3) and (1.4) shows that the stiffness

)
<an

“~
N
>

&
v

of this element is given by

TR AALS L VS Y Y K RPN 5.

B da P (2.10a)

I D aa " dE 4 SR SN o )

where

a"w"2"

Es =1- Eb (2.10b)

g

5l..lﬁl

’
«

reElvr T

vy

where I is a unit matrix; Eqs. (1.1-3) and (2.4) give

(R4

s ML AR

B, =1 [-1, +1, 0, 0 (2.11a)

-~ - =
e

B.=[e-1, -&, - 1/L, 1/L] (2.11b)

S3IINTIIT L,

An interesting consequence of the fact that Es is a projection operator is

that (see Stolarski and Belytschko (1985))

MO

PP, =B (2.12)
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s _ T T
Ke = Bs [ Bg Qg Bg a2 (2.13a)
Q
e
s pt T
P Bgg D Bgg 0 P (2.13b)
Q
e
~§S ~S ~S§S .
Q
e
where
B, = BpR, = [- /2, -1/2, -1L, +L] ~ (2.14)

The effect of the projection is thus to change the shear strain from a linear
field such as given by the gs-matrix of £q. (2.11b) to the constant field

given by (2.14).

Remark 2.1. It can be seen from (2.13c) and (2.14) that the stiffness matrix
obtained by this procedure is identical to that obtained by reduced/selective
integration by Hughes, et al. (1977).

Remark 2.2. Considerable leeway is available in the choice of the bending
mode., We have chosen to ascribe all of the nodal rotations to the bending
mode, but other choices are acceptable.

Remark 2.3, The linear displacement, linear rotation element is not subject

o]

to membrane locking, since Way Way vanishes in (1.8) for that element.

The projection method for membrane locking is similar. In this case, the

b so that in an inextensional mode of

aim is to find the membrane strain ¢
deformation, the membrane energy vanishes in Eq. (2.1). The projecticn for

the linear-cﬁbic beam element has been developed by Stolarski, et al, (1983a),
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(1984b) ang relazec %> a2 mixed method by Belytschko, et al. (1985b). The

displacement fielas a 2 1nitial deflection in this element are given by

u = ul(l -£) + 4 g (2.15a)
weo L (g 22 vg) o, L (g -€d) (2.15b)
W= o0 L(e® - 28 v gy w o) L(Ed - gd) (2.15¢)
N— ~ — \ /
" Y2

Note again that we have used a corotational coordinate system so that the x
axis always connects node 1 to node 2.
The stiffness matrix for this element is obtained by using (1.1-2) in

conjunction with (2.1) which yields

= T T
Se = By 28 @ * 2 [ B By By ® By (2.16)
e
where
8, = (0, Np xx? -Nz’xx] (2.17a)
1 0 o]
.@m = [t s W (X)NI,X' w (X)NZ,X] (2.17b)
T
g. = [Uz - ulr ‘1’1’ ¢2] (2.17C)

If Em = [, or in other words, if no projection is used, then this element will

lock. The cause of locking can be understood by simply considering §m; if the
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moment on an element is constant, then by = -52, so if wo(x) # 0, then the
constant term 1/L cannot negate the terms w°(x)Ni’x, hence parasitic membrane
strains will arise. If wo(x) = (0, the beam is straight and no coupling exists
between flexural and membrane effects. This coupling is an important
attribute of curved elements,

The projection operator which eliminates locking is developed in

Stoiarski, et al., (1984) to be

i L 0 0 L 0 0 R
" -:':.
b Bn= |0 0 0 (2.18) i
SN EINS
¥ LO 0 Q .

::: - .

ziz This projection is obtained by noting that the change in the chord length i$3
v b . b _ b . o oS
7~ Upp 2 Uy - Uy in a pure bending mode is given by o )
= ] 3
o b 0 L ) 0 L 0 0 D,
L0 = [ . = - - DN,
X “a1 T4 T W Mok B =gy (ey eg)ey g (9 - dp)ep (2.19) e
T

o
D' A

)
]
Fd

As can be seen from Fig. 3, this change in chord length is required to .i}“

O
) vt
2 '.'S.' O

maintain an inextensible midline during bending of a curved element; if an 2523

,n_' 1
Ldld

element is straight, no change in chord length occurs during bending.
An analogous approach has also been used to formulate a triangular shell ;:32
element in Stolarski, et al. (1984) which is here called DKT-CST*, In its : NN

development, it is convenient to use only deformational degrees of freedom.

. Ul
.t N ; : . . S
o - Following Argyris (1965), the membrane state of strain is expressed in terms PN
el of the elongations of the 3 sides np and the bending state represented by el
L. .’:\' -
- deformation rotations w10 SO that the deformational d.o.f. are =, ;
N N
.f\ - :._-.._ ¢
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ﬂT = [“1! Nos n3] (2.20a)
2 = (0410 0y15 g5 425 8435 0y3] (2.20b)

The strain energy of the element is then given by
v ’%2T Ky 2 +%(n = 0y) Kpln - 1) (2.21)

where K, and K are the bending and membrane stiffnesses, respectively. On
the element labeled DKT-CST*, in Section 6, the discrete Kirchhoff triangle
(DKT) eiement of Batoz (1982) is used for tﬁe bending stiffness and the
constant strain element is used for membrane stiffness, Note that in the
absence of Dy in (2.21), the bending and membrane behavior of the element are
totally uncoupled.

The bending elongation along each side is now given by the same eguations
as for the beam, (2.19), but written in the form

L L
I o] 0 I 0 0
np = 3 (= 41 + epp)eyp gy (041 - 465109y (2.22)

where %1 and ¢2I are the rotations relative to side [ of the element and
*?I’ ¢gI are the initial slopes of the shell surface relative to the chord of
the element. From the relations (2.22) at the three sides, the projection
operator P is obtained.

Details of the element are given in Stolarski, et al. (1984). One
important aspect of the formulation which was inadvertently omitted from that

paper is that ¢?I and i1 in (2.22) must be defined so that the bending
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elongations of the common edge of two contiguous elements are identical,
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Otherwise, the projections for elements which are not coplanar will be
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different, and as a consequence, parasitic membrane energy will appear in a
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state of pure bending, This is accomplished by defining 941 s the rotation
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in the plane defined by side I and the normal to the shell at node 1.
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[t can be seen from (2.,22) that the bending part of the elongation

T, -{-"-

R4

L4

couples the membrane response with the rotations, and hence, as in the beam,

adds membrane/flexural coupling to the element.
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2 3. RELATION BETWEEN MIXED AND MODE-DECOMPOSITION PROJECTION METHODS ﬁ
v Ko Y
S X
N In this Section a simple form of the element stiffness matrix for mixed :}‘.\
~ N
:J: methods will be developed and then compared to the explicit projection method ::?;
- iy
N . . . . o . e
N to illustrate their similar structure., The Hu-Washizu variational principle ENa’
Y _—
f will be used to develop the mixed method. This principle can be written for a ::.::
: . . A
7 single element in the form e
[ N
” [ loeis O o = 01g) = 89450845 - v, =
7 8
(<) ny (3.1) 2%
-t = 1'\:"
< " aug g gl = L su gy sl
3 b
: | ok
j Standard indicial notation has been used, with repeated lower case subscripts -r';;:
¥ R
s summed over their range; commas denote partial derivatives. Upper case __“__-'
- subscripts pertain to dégrees of freedom of the ny nodes. The nomenclature in 'E;
5 N
- this section is as follows: -_.:'j'
> e
v N
. s &
) €5 , € = strain; matrix form £ is considered a column N
" K}
» tri h T. 2 RN
- matrix such as g (ex, ey, Exy) :,_:7
54 %43 , g = stress matrix :Z:’,:{.:
' u, , u = displacement field o
- o
. 4 , d =°  nodal displacements '::'-';-.4
., . \{:._:
o u Sy Sy = symmetric part of the gradient of the N
.,{ (‘l ’J) -~ - \"
’ displacement field RNy
7. . ool
:;. Dijkz . 0 = . stress-strain matrix N0,
" o
; [n the above, both the subscripted tensor forms and the matrix forms commonly :I-'_;
) S
used in finite element implementation are listed. Through the use of the y
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. latter form, the relation of the projection method and Hu-Washizu can be :__-.:'_-;
clarified more easily. The displacement field in this principle must be C°, -'c-*’
o
b while the strain and stress fields may be ¢l. ",':'.;_é
JG) .r’:-"'-‘
"! The three independent fields are approximated by interpolation functions ;g;-;
as follows e
W pYon s
A .{\»-'\‘:u
<\ nD J'.‘.'_J
‘ T N, d N d (3.2a) PR
U, = . or y = .2a
3 BT i ¢ ’ R
% i
: : i€ i
= .. = TN
; €4 121 Eij1 @1 or g=feg (3.2b)
o "yt
” N |
- * ‘."
. A
: ﬂE B
- 137y S or 273 (3.2¢)
o where n, are the number of displacement d.o.f. and ng are the number of strain
35 .
ok (or stress) interpolants. An important part of this presentation {s the use
of mnemenic terms for the strain and stress interpolants and coefficients so -
N that they are easily recognized later. We also define the j
~
2 standard B-matrix through
g
L Np =
o 7 By d or vSy=8d (3.2d)
E u : = . s = . " o
2 (1,J) 1=1 gl =1 ~ o=
\ NS
“ NN
~ SN
’ Substituting the above into Eq. (3.1), and using the arbitrariness of the ;.!
. oy
- appropriate variations yields: S
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strain-displacement equations
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(3.3)
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L Egeg= 1 Byydy o
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P
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stress-strain eduations
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nE—
El Erg Sy or
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(3.4)
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s
0,, e, =
Je1 |

s
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PAANS

J
equilibrium o

n E - -T '.\':,'-'
f =J§1 Bry Sy or f=8 3 (3.5)

where

iy Ty e
-
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":"'/' e\’-.
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IO s
Ny

da , (3.6a)

By = é Si51 Bijg 9 (3.6b)
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DIJ = é E 0 3 (3.6¢)
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At this point it is convenient to note that

£ -

’
=

£

£ (80 Epr o+ + Engl (3.72)
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S = {8, S50« « ¢+ Spel (3.7b)
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From this notation it becomes clear that the essential ingredients of the
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|
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mixed method, such as the B-matrix, are simply the projections of these

S 4‘\-‘ .'\
SRR
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matrices onto the corresponding stress and strain interpolants, The

)
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el

&

- B-matrix, for example, is projected onto the stress interpolants in this mixed ; ;
0 method. R
* L
0 .".-"‘.“
X A more revealing form of the mixed method can be obtained by DAY
r-::-:‘:\
p orthogonalizing the strain and stress interpolants so that AN
??:}E?
b '-‘::\;:\’
- - - NN
b Ey ® i Siip Eyqp @@ = Ipy or E=]1 (3.9) NN
: a WL AR
) where 1 is the unit matrix. This can always be achieved by a Gram-Schmidt :il}i‘
. D
. procedure if the stress and strain interpolants span the same space and are :j{jé
- .-f..q...:
LSRR
linearly independent; it is also convenient if each strain (or stress) —
¢ :;.'\‘
- parameter e; (or s;) pertains only to 2 single strain 55 (or stress °1j)' A
RRNLYy
Using (3.9), Egs. (3.3 - 5) can be written A,
h’.\f‘\
-
- O

. e=8d (3.10a) stﬁlé
s NN
2 \;\gi
. e % W
; = Tt
s*0e (3.100) Rk
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which can easily be recognized as the strain - displacement, constitutive and

nodal-force stress (equilibrium) relations in projected form.

The element stiffness matrix is now obtained by combining (3.4-6), which gﬁ:ﬁ
KOO
is most easily done with the matrix form, and gives }tlﬁ-
e
£=F @D EDY B (3.11) N
.':'.'::4-
LY
Using the orthogonality (3.9), (3.11) can then be written as CNs
-T = = '-'. '-'.::
Ke =B DB (3.12) el
R
For purposes of comparison of the mixed method with the mode decomposition :fﬁii
:*."\::
projection method developed in Section 2, it is also worthwhile to write N
. e = o o
(3.12) using the definition of DIJ’ (3.8¢c), which gives EhE
-
~ -
L
K =8 [E'QE®B (3.13) NS
a R
N~
Table 1 compares the above form with the mode decomposition projection ' -
method. It can be seen that the two methods are identical in structure, with ?fﬂ
the matrix P playing the role of the projection of B onto the stress :'x
interpolant §, hence the name stress-projection. :i:
'-..\
In many elements, the same interpolation functions are used for the Y,
. \.: LN
stresses and strains. To establish the equivalence of the two methods, the ™
strain interpolants should be orthogonalized, and the matrix P plays the role 1;:;?
of the projection of the B matrix onto the strain interpolant g, - ?32&:
R
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A1tﬁough the conditions for equivalence between mode decomposition
projection methods and mixed methods appears straightforward, establishing the
exact equivalence is not possible in some elements, Stolarski and Belytschko
(1985a) have shown an equivalence between mode decomposition projection
methods and mixed methods for a large variety of beam elements, but in that
paper it was shown that no mixed element is equivalent to the triangular plate

element developed in Belytschko, et al. (1984c).

Remark. The equivalence of the two methods does not depend on the

orthogonality of the strain and stress interpolants; it only serves to clarify
the relationship. The stiffness matrix in fact is not changed by -

orthogonalization of the interpolants.
Table 1

Comparison of Mode Decomposition Projection and Mixed Methods

Mixed Method Mode Decomposition

Projection Method

(Grthogonal Intarpolants)

Strains

See Egs. (3.2b), (3.10a)

£*fe=£84d =B P ¢
Stiffness Matrix
See £q. (3.13) See £q. (2.10a) (only shear stiffness)
= T y T T
Ke =3 [E DE®B Ke = P [ B¢ D B¢ da P
Note interchangeability when E = Es’ E-= 8-
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4. NINE-NODE LAGRANGE SHELL ELEMENT

The 9-node shell element to be discussed here has been extensively
studied by Parish (1979) and by Hughes and Liu (1981). It is a Mindlin type,
degenerated shell element which uses quadratic Lagrange interpolants. The 2x2
quadrature version of the 9-node element possesses the unique and beneficial
property that in Eonstant moment states, the transverse shear and membrane
stresses (that is, the parasitic stresses), vanish at the quadrature points.
Thus 2x2 quadrature provides a stress projection which should avoid locking.

This property can be verified by performing the numerical experiments
illustrated in Fig. 4. As indicated in the figure, both flat elements and
elements with a single curvature were’'considered. In the numerical
experiment, moments were applied as shown and the transverse shear energy and
membrane energy was monitored. In all cases which were tried, the transverse
shear and membrane energies were less than 0.01% of the total strain energy.

The same behavior was observed when the quadrature points were thfted
fromn = £ = £ 37 1/Z(the Gauss points) ton =¢ = t%@ . However, the accuracy
of the element then deteriorates even though the membrane energy locking does
not occur; for an illustration of this see Table 2, which gives results for
the arch problem described in Fig, lb. These runs were made with a beam
element because the shell develops a spuricus mode for the t'UQ quadrature
scheme.

This feature of the 9-node element with 2x2 quadrature makes it a very
desirable element for the analysis of shells. Its highly convergent behavior
will be illustrated in Section 6. However, the element suffers from one
important drawback: its rank is not sufficient to preclude spurious singular

modes, so for some boundary conditions the total stiffness matrix is singular.

P T et
[ AR ..' _'.'.N“ Y

P}

0

3 y's
KO

TG0
SAS

RN

"»
-~
~
~
~
'

A
»\..
u\'
.
'..
..'.
e
- '.
RS

1.-,-,-.‘ T
A

'l "‘ ﬂ
XX

..ji—é;f":f‘

salele

Ly
.

PR
P A




v..........& ra.q.‘x\..cf
WNEYNAY O
) HH 84S

% ..\..\,.....\... o m...... A AAE

<
M(K 1) M
Bending test for an element.

Figure 4.

(a)
(B)




:
i

SN S PSS VT S

LT A s TY Y Y,

*5"1%2%a"s

MR R

R TS D SIS [\

LS S B

4

1 S

32

Table 2

Effect of Quadrature Point Location on Accuracy for the Arch Problem

wFEM/wexact

Number of Elements u_/u Us/U

- ]12
Gauss quadrature £ = £ 3

10 0.9861 0.0013 0.0031
20 0.9984 0.0013 0.0031
40 1.0009 0.0013 0.0031

Midpoint quadrature £ = 1l
10 1.0928 0.0016 0.8033
20 1.0257 0.0120 0.0041

40 1.0077 0.4199 0.0031

Up = membrane energy, Ug = shear energy, U = total energy

w = deflection under load
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: NG 4
‘The control of these spurious modes has been developed for the 9-node ;};tj‘
it

plate element in Belytschko, et al. (1984), and the stabilization procedure s
ALy
for the shell element has been reported without analysis in Belytschko, et al. :{ii,
e,
(1985). In Appendix A a description of the element as used here and a ji{b’
B :“:r‘-'
‘ S

detailed development of the stabilization operator is given, e
RO
Reduced integration of the stiffness may also be viewed as a projection 50

..: _.._-_.

method. This, of course, is suggested by the equivalence principle of Malkus ;:j::
[P N
LA AP

and Hughes (1978) which establishes the equivalence of reduced integration

displacement and reduced integration mixed methods; the relationship between

the latter and projection methods has already been discussed herein. Reduced

1ntggration represents an implicit projection, in that the projection “:f*

operator is never explicitly invoked. An exact mixed formulation for the 9-

node (2x2) element is developed in Appendix B. In that development, by using

Dirac functions for the stresses, the reduced quadrature displacement = a

. T
' formulation can be shown to be equivalent to an exactly integrated mixed ICSahe
v ._‘- "~ >
N ~ e
: element, G
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NG
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5. AN OBSTACLE COURSE FOR SHELL ELEMENTS

A major shortcoming which has impaired the development of shell elements
is that in the reports on many elements, they are not tested against a set of
problems which challenge even a fraction of the capabilities required in a
high-performance element. A good shell elemeqt must have the ability to
handle inextensional bending modes of deformation, rigid body motion without
straining, and complex membrane states of stress. Inadequacies in this
spectrum of attributes are a severe handicap.

A useful obstacle course for an element must also be reasonably short; it
is useless to include problems which only disqualify elements which are
already disqualified by other'prob1ems.

In this effort, we have assembled the three test problems shown in Fig.
5. A1l of these problems have been seperately used by others in the
literature as noted in Table 3. We have found that together they are an
extremely discriminating set of problems.

Some remarks on this selection:

1. The Scordelis-Lo problem is extremely useful for determining the ability
of an element to accurately solve complex states of membrane strain. A
substantial part of the strain energy is membrane strain energy, so the
representation of inextensional modes is not crucial in this praoblem,
Even elements with severe membrane locking will converge at a moderate
rate in this test, whereas inadequacie- in membrane stress accuracy will
severely inhibit convergence.

2. The pinched cylinder with a diaphraém is one of the most severe tests for

both inextensional bending modes and complex membrane states. We have not
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LR,
R
. included the pinched cylinder with free ends because any element that ;j::j:.\;
) RN,
b passes the diaphragm support test will perform well when the boundary LGN
b~ f
condition is simplified to a free boundary. S
3. The hemispherical shell problem is again a. challenging test of an
. element's ability to represent inextensional modes; it exhibits almost no ol
(A .
b
membrane strains. The role of this test problem is less critical with NIt
: . . Ko
: regard to inextensional bending than the pinched cylinder problem. .-:‘-_-j.'-
. '\"':'." \
: However, it is a very useful problem for checking the ability of the St
N element to handle rigid body rotations about normals to the shells .
. surface. Large sections of this shell rotate almost as rigid bodies in
. response to this load, so that the ability to accurately model rigid body -
;'A- ’-
2 motion is essential for good performance in this problem. Some 5 d.o.f. SR
! AR
. per node formulations of triangular elements fail this test because they AR
: N
result in spurious straining when rotated about the normal to the shell = Lot
TN
A surface. This problem is much more challenging than the point-loaded
- "s"::.'::
. ’ spherical problem which is often used. Z-::'.':-\.j
. AN
1 o
g ‘::‘j:'_'v.r
3 Table 3 NS
& et
: el
. Problem Parameters for Obstacle Course RASSNL
2 Problem 1. Scordelis - Lo Roof ;'.i_l;:jl
X length: L = 50.0 P
- radius: R = 25.0 s
thickness: t = 0.25 8 FOA
Young's modulus: E = 4,32 * 10 o
‘ Poisson's ratio: v = 0.0 N
¥ boundary conditions: supported at each end by rigid j:l-,}:'.-
¥ diaphragms T
: loading: wuniform vertical gravity load of 90.0 per unit ::;_:.‘.’-‘;._
area . SOAY
{ converged numerical solution: vertical displacement at oEl
. midside of free edge = 0.3024
) reference: Scordelis and Lo (1963), Ashwell (1975) .:',::::f,
» e v, -
: ::::';-I"
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N Problem 2. Pinched Cylinder with Diaphragms -}_':jfj
N length: L = 600.0 aled
radius: R = 300.0 —
’ thickness: t = 3,0 ok
7 Young's modulus: E = 3.0 * 108 ol
¥ Poisson's ratio: v = 0.3 : hoye
Y boundary conditions: constrained at each end by a 24'
. rigid diaphragm,u, = u_ = 4, =0 in Fig. 5 2y
loading: opposing radial Joads®as shown in Fig. 5, T
F=1.0 NI
> radial displacement at point load: 0.18248 * 10-4 oo
S references: Lindberg, et al, (1969), Dvorkin and Bathe ::f.:'f.'
s (1984), Flugge (1973) e
> At
Problem 3. Hemispherical Shell o
X radius: R = 10.0 N
& thickness: t = 0.04 , o
- Young's modulus: E = 6.825 * 10 ey
2= Poisson's ratio: v = 0.3 e
o boundary condition: bottom circumferential edge of - ~-'.:
: hemisphere is free ) T«
7 loading: opposing radial point loads alternating at 90° '
- as shown in Fig. 5, F = +2.0
o solution: radial displacement at loaded points: 0.0924
- references: Morley and Morris (1978), MacNeal and Harder
< (1984) |
o Table 4 %
. I
™. A
Tu ::'\':'-'
',,.: Comparison of Results for Hemispherical Shell (See Fig. 2) .C:;:_.‘j
with Consistent and Inconsistent Spurious Mode Control ‘ f:-_:-_.:"
.‘_\:
(results given are ratio of computed to analytic displacement under load) ::-::-{j
i
Mesh for Consistent Inconsistent 2x2 Quadrature : #
Quarter of Shell Control Control y = h =0 N
\ (number of given by Eq.(A.32) ' }:,‘E_.
) nodes/edge) N
-‘.‘ “.\ \
& N
3 1.319 1.2672 - e |
) - ,l."u.
- 5 1.0794 1.0792 1.0954 e
- '-‘,:-"
¥ 9 1.0056 1.0063 1.0138 SR
~ RO
’ 13 . 0.9963 0.9970 1.0037 g
:_: _ 17 0.9925 0.9958 ’ 0.9987 -j.::.:
> - Roe
. RS
o e
; .
: N
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Remark 5.1. This selection of shell problems was inspired by the work of

35

4
l

MacNeal and Harder (1984), who devised a set of standard finite element

.
¢
2

problems which included hemispherical shell and the Scordelis Lo roof, but not f.;aj-
roaa,
4,\ e
the pinched cylinder. They also included various plane patch tests and plane, }tiﬁg
<4
=9

two dimensional problems.
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R 6. RESULTS 5;:;-

:E 'I.J

v Results have been obtained with two classes of elements: 3-node f.-fu-f
» ‘:c.:‘-

# triangular elements with 5 or 6 d.o.f. per node and CO Mindlin type shell e

iy ek

:: elements based on a degenerate shell theory of Hughes and Liu (1981). All of s
. the triangular elements utilize the discrete Kirchhoff triangle (DKT) .'-f;-.":
formulation of Batoz et al. (1982) with different membrane strain fields.

A - PP

0 They are as follows:

A l. OKT - CST: a standard flat triangle with constant membrane strains and ‘?
" . :.r:
:: no membrane/bending coupling. ;-::‘;‘.-‘
2 NN

2. DKT - CST*: a constant strain triangle is used for the membrane strain as vint

. above but the membrane projection described in Section 2 and originaf]y :x,

< f'-,"_-:‘

b4 reported by Stolarski et al. (1984), which couples membrane and bending, P:e
< }.S:_\
™ is added. et
N 3, DKT - LST: a 6 d. o. f. per node element in which a linear membrane field -ri::f.::‘
.~ _:.-"z
N with reduced integration as given by Carpenter et al. (1985) is employed -.;:;
~ NN

for the membrane effects., This element is flat and has no membrane- N
flexural coupling. ';:_f-:

i s‘__x:_
~ 4, DKT - Olson-Bearden: a linear field given by Olson and Bearden (1979) is :":::;‘

*.'_\_‘

. used for the membrane strains in combination with a DKT element. This A
g element has 6 d.o.f per node and no membrane flexural coupling.
) Among the Mindlin CO elements, the following were used: o

1. 4-node SRI: this is a standard 4-node Mindlin element described by Hughes E"f

N and Liu (1981) with selective reduced integration, consisting of reduced i:‘:',::

) R

: integration on shear (1 point) and 2x2 quadrature on the bending and _'.';-Z;
e

membrane terms. . ies
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2. 9-node SRI: the 9-node Lagrange element with 3x3 gquadrature on all
bending and membrane terms and 2x2 quadrature on the shear terms,

3. 9-node 3x3: full quadrature (3x3) on all stiffness terms of the 9-node
element.

4. 9-node y-method: 2x2 quadrature on all terms of the element stiffness

with y-stabilization, as described in Appendix A.

Scordelis-Lo roof. Results for this problem shown in Fig. 6. These are

observations of element performance for this problem:

1. The DKT-CST and DKT-CST* are both very poor for this problem, whereas for
the other problems in this obstacle course they perform very well,

2. Among the triangles, only the Olson-Bearden and DKT-LST elements perform
reasonably.

3. The 9-node y-element and the 4-node SRI elements perform extremely well on
this problem. However, when a selective reduced integration is used in
this element, the results hardly differ from full integration. This is
very puzzling, since the problem is dominated by membrane response rather
than bending, so the severe locking of 9-node SRI element is quite
unexpected. In fact, there seems to be considerable membrane locking in

the coarse meshes, but it is quickly eliminated with mesh refinement.

Pinched cylinder with diaphragm. Results for this problem are given in

Fig. 7. In this prob]em, all of the triangular elements work reasonably well,
with only the DKT-CST being marginal. On the other hand, the performance of
all of the Mindlin elements, except the 9-node y-element, are quite poor.
Particularly noteworthy is the fact that even with 17 nodes along each edge,
the 4-node SRI element is still 5% in error and converging very slowly. This

is the only problem in this set in which the 4-node element performs below
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" par. No improvement is achieved in the 4-node element by using l-point .

quadrature on ail terms, see Liu et al. (1985). N v

In order to illustrate the relative magnitudes of shear and membrane YA
locking, Fig. 8 shows the results obtained for the 9-node element for SRI,
2x2, and 3x3 qpadrature. It can be seen that for coarse meshes, membrane e
locking is dominant whereas for the finest meshes, shear locking becomes more

important.

Figure 9 clarifies the role of membrane and shear locking by showing the

fractions of the total energy which are shear and membrane energies for E;ig
various meshes of 9 and 4-node elements. As can be seen, for all of the EE;;
elements, the shear energy tends to almost zero as the méshes are refined, but :t:::.
the rate of convergence of the shear energy for the 9-node 3x3 element is E:Ei'

L

quite slow. The membrane energy fraction of the y-element tends to

Ak
P

R T e v 4

‘-'I .

(l,n“. DY Y
- . .

approximately 0.373. For the 4-node SRI element the membrane energy is

A
»

somewhat larger for all of the meshes considered. %2&
_ -
For the 9-node 3x3.element, the membrane energy is overpredicted even for 252&(
the most refined mesh, which is indicative of membrane locking. The initial iﬁt t
increase of the membrane-energy fraction, which is apparent in Fig. 9, is ;fif}

somewhat puzziing. Evidently for the coarse meshes, the total internal energy

is very small because of severe locking; the initial refinement of the mesh in

.I -. -‘
this element serves primarily to reduce shear locking, so that parasitic }:::¢
\",\':"
membrane energy actually increases at first. ROV
\"'-.':\
st~
‘Spherical shell problem. The results for the spherical shell are shown in ?;r !
N
. T
Fig. 10. The following points are noteworthy: RO
’ DO
st ad
1. This is the only problem in which the Olson-Bearden element performs 3$:j:v
gk 3
poorly, AN
LN
- 2
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Pinched Cylinder with Diaphragm

Ween/ Wanalytic
-

—&— 9 node SRI
—— 9 node 3x3
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Figure 8. Relative effects of sheaf‘ and membrane locking in pinched

Number of Nodes / Side

cylinder with diaphragm.
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47 2 aeal
s
2. The other triangular elements ‘perform extremely well in this problem, Séi;;
whereas the fully integrated CO elements (4-node and 9-node) all exhibit AN
severe membrane lccking. Shear locking is almost totally absent, E}Ci?
Remark 6.1: Noor and Peters (1981) have shown similarly stiff behavior of
displacement elements for curved beams. Interesting results have also been
given by Ramm and StegmGl]er (1982) who found that for the 16 node lLagrange
with 4x4 quadrature, the buckling value of a cylindrical panel converged only
to within 2% of the solution with a 12x12 element (37x37 nodes, 6900 d.o.f.) =
mesh; they did not report their curved 9-node element results because they E
were SO poor. , g.
Summary of performance. As can be seen, this obstacle course includes :f:j:
problems which compromise the performance of every element except the 9- EESEE
node y-element and the DKT-LST. The DKT-LST unfortunately suffers the ggigé

drawback that it does not have a variational basis. The 4-node SRI element is

the next best among these elements, although it exhibits some locking in the

pincﬁed cylinder/diaphragm problem.

A confusing result. The senior author has devoted considerable care to the :i;:i
-~ \.-__.
L S
development of methods for controlling spurious modes which are consistent in AAE
\'.\..'- )
the sense that the strains for linear displacement fields and rigid body AR

motions are evaluated exactly, which accounts for the terms in addition to
h in the y projection vector, see Appendix A. However, very good convergence
can be obtained in many cases when the additional terms are omitted. Table 3

compares the results for a consistent and inconsistent method of spurious mode

control in the hemispherical shell problem; the fnconsistent method, in fact,
converges faster., The major flaw we have detected in inconsistent methods of
stabilization is that it can lead to erroneous stresses in unusually shaped

elements where tne terms th and th are large.

~ A~
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Remark 6.2:. The 9-node element solutions which are repoéted here for the
pinched cylinder with diaphragm could be obtained by simply using 2x2
quadrature., When the assembled stiffness matrix obtained with 2 x 2
quadrature is not singular, the y-method results are almost identical to the

results obtained by 2x2 quadrature.
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APPENDIX A

The main purpose of this Appendix is to provide details of the 9-node
shell element with 2x2 quadrature and the stabi]%zation of the spurfous modes
by the y-method. Stabilization procedures of this type were developed for the
4-node plate by Belytschko and Tsay (1983). ResU]ts with this
yv-element have been reported in Belytschko et al. (1985a) but the consistency
of this operator for curved shells was not examined there; formal consistency
is equivalent to satisfying the patch test, see Belytschko, et al. (1984a).

[t will be seen here that once the y-meihod is applied to curved elements,
certain losses of consistency result, and the stabilization can best be called
quasi-consistent. The effect of this is not clear, but as can be seen from
the results presented in Section 6 no deleterious effects have been noted.
This evidence is however not conclusive since even inconsistent control can
perform well, see Table 4,

The degenerated shell element is developed in a manner that closely
follows Hughes and Liu (1981). Attention is restricted to the 9-node
element. The physical domain of the shell is described by an isoparametric

transformation from a reference cube described by coordinates £, n, ¢ through

h o3
[
010

“’I‘P(E’ n, %) X1+ * “’I_(E: n, %) x’il-) (A.1)

I=1

where x;, and x;. are the coordinates of the continuum nodes associated with
shell node [ and x; are the Cartesian coordinates in the physical space; see
Fig. Al. As can be seen from Fig. Al, the nodes labeled I[- are below the
corresponding shell node I (z < 0) while those labeled I+ above the shell node

[ (¢ >0).
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JThe shape functions vy are constructed from the two-dimensional Lagrange

interpolant NI by

‘l’I.,. = N+(C) NI(E- n)
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The midsurface of the shell is given by (A.l1) with z = O, which by means of

(A,1-2) can be written

9
X = 1 Xxyr Ny(€, )
P M P

where

(A.2a)

(A.2b)

(A.2¢)

(R.2d)

(A.2e)

(A.3a)

(A.3b)

(A.3c)
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3
~
2
N =4 A.4b)
xip =7 (X510 * %414 (.
\I
N
~§ The stiffness matrix will be integrated numerically and the points at
B.%
which the integrand is to be evaluated are called quadrature points. At each
‘J quadrature point, a local Cartesian coordinate system (2, ;, 2) is constructed
N -
“xj so that the x, y plane is tangent to the midsurface defined by (A.4a) and the
19
= z coordinate is perpendicular to this plane. If large rotations of the shell L
j are to be treated, this coordinate system can be considered corotational in .Eiﬁﬁ
§ the sense used by Belytschko and Hsieh (1973) and Belytschko and Marchertas lii
* '\_-._-.
: (1974), but this is not of major concern here. T
,. . ..,'_.-\".
'j The strain-displacement equations at each quadrature point can be written -ﬁpﬁ#
: O

23
%4 -~ -~ PPN
[ 0
= + f r = = A .
y €8 = Sq8 T % %8 ora=1, 2, B =1, 2 (A.5)
L)
l' g - -
¥ R p 34, 3ug :
t, Ty (=2 =) for @ = 1,2 (A.6) o
] " 3 Xa 9 X, ;':_:-::::
N r:“:-:.?
. where A
- A
~ - :r K
au T
X Q-2 | (A.72) T
n, BAREN
o ax RORRY
. PR

Q
c
477 |
ALY 3
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o
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(A.7b)
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K = - — ' (A.8b)
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The strain matrix is defined by ¥ ,.

I3 )‘ "
P

e
,f';.
4w

° Ao Ao ~ -~ ~ ~ ~
< ey, zexy' Ky s Ky’ Zxxy’ €z’ eyz]

ANE

(A.9)

Fe

h) -.:.‘ \‘,‘i N5
LR .'-

.
AT
e

)

and the B matrix at a quadrature point a gives the strains through

N

-
]
N
AN
"

2
LN N AN

»
o
[

L)

4 (A.10)
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9.1 [uXI’ u_YI’ UZI’ ¢XI’ ¢yI] (A.llb)
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[t should be stressed that the superposed circumflex in the above equations -

a 2" a e

A
l' 1]
7

indicates that all components of ¢ and d are expressed in the corotational '3k

coordinate system of point a when evaluating the strain at point a. .fd
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For implementation purposes, a transformation R is defined at each
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where 3? is the transformation between the local coordinate system of
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quadrature point a and the coordinate system of node [. If 5_d.o.f. are used
per node, the transformation between a and each node of the shell will be ;ﬁéy
different for a curved element; 5 d.o.f. per node is neéessary if singular E;tl
systems are to be avoided. e
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Control of Spurious Modes for Plate Bending
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The control of spurious modes for the 9 node plate CO element has been
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described by Belytschko, et al. (1984b). However, the method described there
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bZaI : bya[

N (x,) /2y (A.19b)

and the vectors § and h given by

st=[1,1,1, 1,1,1, 1,1, 1] (A.20)
h' = [+1, -1, +1 1, 0, -1, +1, -1, +1]
D =4 s T4 ’ “ly Yy ", y =i, (A.Zl)

A single coordinate system is used at all quadrature points of the plate
element so x is coincident with x, y with y. It can be shown that if the
quadrature points are Xq7 which in the reference plane are given by the four
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combinations of the coordinates, £ = n = ¢ 3 72 then

Bl X5 = 8y (A.22)
Bl h=o0 ~ (A.23)
bl s =0 (A.28)
Noh=Nx) h=-% (A.25)
Nos=Nx)s=1 .mzm

where N is the row matrix of shape functions, § is the Kronécker delta,

1J
5j are the vectors of nodal coordinates of the element. Using (A.22-26), it

can easily be verified that the first 3 modes listed in Table Al are spurious

- te ta SNt R . ST

- M T T e T WL M R TR S T TR TR . e . . .--_ -’,'.-- IR 'a“...' .'_-‘.' .‘ e " .'_.'
'(“.rl,‘.-‘.‘ I R Ry RS e e Lo AN BN RN S NN T

.
o
)
L}
N
h i
\

J
N f‘_}"‘

B
"52:?;‘{'-3
'ri—.._‘ -
'y * ~'
e
1*“ *

Ll JETIE
.

.
‘)

‘v/‘) .‘1
.-:/;. _
e L

A N
LR A A
(e N
’ ) .. .’ L}
PRIy

N|-'l -

l:‘"
L
(XS

it
"'.:s:;. ,
XX

B
Ca

4 )
2
W b !
AR

b )

R IR

ASl

‘i ‘l

22
.D ‘I

K

R
’

.|

P
."
.l .l

.
*
.}

’

L
’
[

'l
g
*y
d

Z
%

i
)
)

N

4
" |

',E: _.-'_.. . A

RS |

MR

LR

XA
‘:\"v
.

...-
, '.'-.’-."'."-. .
AR

a (] . - .

Th
A

PR

P4 :‘.,
% P4 c:'
LAY



singular modes of the plate element, which means that
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for these nodal displacements which are not rigid body modes. Note that
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Rl = I for a plate, and that (A.25-26) are essential in establishing (A.27b).
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The control of the spurious modes then consists of defining a projection

operator y which does not destroy the original consistency of the 8 matrix, as
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exhibited by (A.22). Following Belytschko, et al. (1984), the vector y is
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x = 1 (8101 * 35 Bpy) *3g 0+ 350 8 (A.28)

Ten vectors are needed because Eia are not all linearly independent. Linear

consistency then requires that
Coi+C X*Cyy)=0 for all c, (A.29a)

Substituting (A.28) into (A.29a) and using (A.22-24) yields

4
T T T + 2

colajgs s) +ep(agh x+ay3 x

a=1 -

4 (A.29b)
+c, (a h oy +a, s y+ I a,)=0
2% 2 L7802 LT L %

Since the above must hold for all ¢y it follows that 39 © 0 and only 2
conditions need be satisfied by ;.- Thus a large variety of options are
available in the consistent control of the spurious modes. In Belytschko, et

al. (1984), it was chosen to let
= 1 3-1 T =
1, -T3 N % P Fagh X a=1¢tod (A.30)

However, this approach is not adaptable to the shell problem, as will become
clear shortiy.

The approach that is therefore taken is to define a projection
operator g at each quadrature point. Equation (A.29) must hold for each g

and this is accompliished by letting
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- Spurious Mode Control for 9 Node Shell The six modes which are to be T
- LN
if controlled are listed in Table Al. The form of a spurious mode projection has fﬁfj:
. ':':\ (
? been presented in Belytschko, et al. (1985) but a careful examination of its e

consistency and limitations is still not available. We will attempt to
partially remedy these shortcomings here,
The issues of consistency (and the related issues of patch tests) for

shells still appear unresolved. While the requirement that an element be
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strain-free in rigid body motion is quite clea;, the additional consistency
requirements associated with linear fields are more difficult to formulate in
a curved element.

For this reason, we have taken advantage of the relationship between the
shell and continuum elements (see Fig. Al) to develop as consistent an
operator as possible. As in the new plate version of the spurious mode
projection just described, the projection operator is defined at each

quadrature point a, and denoted by Xo- Consistency then requires that

T oy L ,
Xy (cy 5+ jzl ¢ 5j) =0 for all ¢ (A.34)
where
IG = ag n * axa QXQ * ayﬁ Eya (A.35)

ié matrices associated with

quadrature points other than a, as in Eq. (A.31), and 300 which must

Note that we have immediately dropped the.ﬁ

obviously vanish as before. Furthermore, in contrast to (A.29), consistency
is now required with respect to fields linear in 2 (that is x3).

We now define

- 3., (x.) I=1¢%39
- It ‘~a
Blals T, i=1to3 (A.36)
i

that fis, éia are the derivatives of the continuum node shape functions. By

consistency of the original continuum shape functions
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9
Bia %5 = 121 (Biale X1+ * Bial- Xj1-) = Sij i, j=1to3

(A.37)
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where the sum is over the continuum nodes and Ej = (5j-’ 5j+)’ which are the

. coordinates of the continuum nodes.
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I Using (A.2), it can be seen that
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Equations (A.4la-b) can be satisfied exactly as in the development of the flat

|
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plate operator, (A.32), so that the projection operator at each point becomes tﬁ?:'
sn-(T )b -(TY b (A.42) e
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However, (A.4lc) cannot be satisfied and there is no latitude with which to I
'."'_\?
attack it, so that the method as described here must violate consistency =g
T - B?~‘
whenever ' z # 0. A
The control of the spurious modes is then accomplished by defining S ;:jyg
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additional generalized strains at each of the four laminar gquadrature points

through .
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",.: The stiffness matrix of the element is then given by adding the effects
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of the stabilization to 5e see (A.18), which gives
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It has been shown by Belytschko, et al. (1984) via the Hu-Washizu
) principle that the y-method stabilization is equivalent to recovering that
N portion of the diagonal terms of the stiffness matrix which has been lost by

= reduced quadrature. Specific equations for the r-parameters have been given
2;33 by Belytschko, et al. (1985a). One important observation on the choice of the
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We show here a construction of the strain and stress fields such that the

e AN

resulting 9-node mixed element is formally equivalent to the 9-node 2x2 {:fﬁ

quadrature disp]acemént element. The demonstration is limited to the membrane
< portion of the 9-node element, but it can easily be extended to the complete
shell element. The demonstration is the spirit of the Malkus-Hughes (1978)
equivalence theorem but offers the interesting feature that by using Dirac
functions for the stress interpolants, the demonstration provides an

equivalence with the exactly integrated mixed element., We assume that the

material properties of the element are constant.

The essential ingredient in the demonstration of the equivalence is the i :
construction of the interpolation functions for the strains and stresses which g;-éi
¢ are used in the Hu-Washizu functional., For conceptual simplicity, it is Egéfgi
: | important to choose the functions so that the orthogonality condition (3.8) is ;:;:é

met. This is accomplished as follows,
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The element is subdivided into 4 subdomains Ql to 94 sa that QI contains
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integration point X1 and no two subdomains QI overlap, i.e. QI N QJ = 0 if

1 #J; see Fig. Bl for the subdivision. N

We then define Heaviside functions by
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1 if x is inq;
H(x) = (8.1)
0 if x is not in Qr
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where Ay are the areas of the subdomains q,. o
From (3.12), (B.9) and (B.10) it follows that St
o
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which is analogous to the form of the numerically integrated displacement :-;fj::
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stiffness except that AI replaces the determinant of the Jacobian \"‘]
‘JI = J(il); see (A.18). Note that the weights for 2x2 Gauss quadrature are i
all unity. However, the completion of the proof requires that it be shown 1
that nI can be constructed so that ‘JI = AI’ 4
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is a cubic¢c function of both £ and n.

of the element exactly

1 1 4
A=f [ JE,n)dedn = | U (8.12b)
-1 -1 I=1
The above equation indicates that letting AI = JI we have § Ap = A The

I
partition of @ into four such nonoverlapping QI should be possible, since the

only restriction is that each integration point b3, falls within Q.
It is also of interest to write the intermediate equations, namely, the

counterparts of (3.10). Using (B.7-10) these can be written as

er = Blxp ¢ (8.13a)
s;*A D (B.13b)
g
3 T
£=85s=1 81(x) 3 (8.13¢)
1=1

The above clearly brings out the structure of this mixed method. The strain
parameters are simply the strains at the quadrature points, the stresses are
only modified by the areas (Jacobians).

An almost equivalent mixed method can be constructed by letting
31 = Hi(X) 13,3 (B.14)

Then E is block-diagonal with the blocks given by
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where by the mean value theorem, 21 is some point in QI (usually not the Gauss
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quadrature point), Equations analogous to (B.ll) and (B.13) can be developed
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for this construction.
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It is not clear whether this construction falls within the scope of the

-

convergence proof given by Oden and Reddy (1974). However, the uce of Dirac

[< 'J_&_-

delta functions makes this method a hybrid of collocation and Galerkin

a e

methods, for which convergence theory should be feasible.
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APPENDIX C

C.1 Impulsively Loaded Cylindrical Panel

This problem is defined in Fig. C.l and Table C.2. The Ends of the panel
are simply-supported, while the side boundaries are fixed. Both material and
geometric nonlinearities were considered. The load was applied by prescribing
the initial velocity given in Fig. C.2 to the nodes in the region loaded by
the explosive. Figure C.3 shows an undeformed and deformed mesh. Table C.2
compares the results obtained for various meshes to an experimental result.

[t can be seen that convergence to the experimental value is relatively
slow. The reason for this however, is not the accuracy of the element, but
the extreme localization of deformation which occurs due to the formation of

plastic hinges.

C.2 Collapse of a Hollow Column

Figure C.4 shows the simulation of a hollow column loaded axially. The
time history of the load and material and geometric properties may be found in
Fig. 3 and Table 1 of Kennedy and Belytschko (1982) where results obtained
with a 4-node quadrilateral element using one-point quadrature and hourglass
control are also given. The results obtained with this element compare well
with those obtained for the quadrilateral, except the model is somewhat

stiffer, Note the severe change n cross-section which accompanies buckling.
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TABLE C.1

Loaded Cylindrical Panel
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TABLE C.2

Final Displacements of the Cylindrical Panel
for Various Meshes with Ilyushin Yield Condition

Mesh Displacement Displacement CPU time
Half-panel at y = 6.28 at y = 9.42 IBM 3033

6 x 16 0.917 0.401 83

8 x 16 1.043 0.448 138

10 x 20 1.081 0.462 162

12 x 24 1.124 0.473 291

16 x 32 1.183 0.530 670
experimental [48] 1.28 0.70
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